记录仪厂家
免费服务热线

Free service

hotline

010-00000000
记录仪厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

无需隔离二极管就可保护敏感电路免受过压和电源反向连接的影响

发布时间:2020-07-21 18:37:15 阅读: 来源:记录仪厂家

如果将 24V 电源连到 12V 电路上,会出现什么情况? 如果电源线和地线不小心接反了,能不损坏电路吗? 您的应用是否处于一种严酷的环境,其中输入电源可能振荡到非常高的电压或低于地电位? 即使这些事件不太可能发生,但是只要出现一次,就能损坏电路板了。

本文引用地址:可以采取哪些方法来保护敏感电路免受过高、过低甚至负电压的影响? 为了隔离负的电源电压,系统设计师传统上给电源串联一个功率二极管。不过,这个二极管占用了宝贵的电路板空间,并在负载电流很大时,浪费大量功率。另一种常见的解决方案是给电源串联一个高压 P 沟道 MOSFET。P 沟道 MOSFET 比串联二极管所浪费的功率少,但是 MOSFET 和驱动 MOSFET 所需电路使成本提高了。这两种解决方案的缺点是,它们都牺牲了以低电源电压工作的机会,尤其是串联二极管。另外,两种解决方案都不能防止受到过高电压的影响,这种保护需要更多电路,包括高压窗口比较器和充电泵。欠压、过压和电源反向连接保护LTC4365 是一种独特的解决方案,简要和可靠地保护敏感电路免受不可预测的高或负电源电压所影响。LTC4365 隔离高达 60V 的正电压和低至 -40V 的负电压。只有处于安全工作电源电压范围内的电压才能传递给负载。惟一需要的外部有源组件是一个双 N 沟道 MOSFET,连接在不可预测的电源和敏感负载之间。图 1 显示了一个完整的应用。电阻分压器设定过压 (OV) 和欠压 (UV) 跳变点,以连接或断开负载与 VIN 的连接。如果输入电源电压变化到这个电压窗口之外,那么 LTC4365 就快速断开负载与电源的连接。图 1:汽车应用中,完整的 12V 欠压、过压和电源反向连接保护电路双 N 沟道 MOSFET 在 VIN 处隔离正和负电压。在正常工作时,LTC4365 为外部 MOSFET的栅极提供 8.4V 增强电压。LTC4365 的有效工作范围为 2.5V 至 34V,过压-欠压窗口可以处于这个范围内的任何地方。就大多数应用而言,在 VIN 处无需保护性箝位,这进一步简化了电路板设计。准确和快速的过压和欠压保护LTC4365 中两个准确 (±1.5%) 的比较器监视 VIN 处的过压 (OV) 和欠压 (UV) 情况。如果输入电源分别升高至高于 OV 或降低至低于 UV 门限,那么外部 MOSFET 的栅极就被快速关断。外部电阻分压器允许用户选择适合 VOUT 处负载的输入电源范围。此外,UV 和 OV 输入的漏电流非常低 (在 100°C 时,典型值 1nA),从而允许外部电阻分压器中的高值电阻。图 2 显示当 VIN 从 -30V 缓慢上升至 30V 时图 1 电路的反应。UV 和 OV 门限分别设定为 3.5V 和 18V。当电源电压位于 3.5V 至 18V 的窗口内时,VOUT 跟踪 VIN。在这个窗口之外,LTC4365 关断 N 沟道 MOSFET,即使 VIN 为负,也断开 VOUT 与 VIN 的连接。图 2:VIN从 -30V 上升到 30V 时的负载保护新颖的电源反向连接保护方法LTC4365 采用了一种新颖的负电源电压保护电路。当 LTC4365 在 VIN 处检测到负电压时,它会快速连接 GATE 引脚和 VIN。在 GATE 引脚和 VIN 之间没有二极管压降。当外部 N 沟道 MOSFET 的栅极电压为最大负电压 (VIN) 时,从 VOUT 到 VIN 负电压的泄漏最小。图 3 显示了当 VIN 被带电接入 -20V 电压时,会发生什么情况。VIN、VOUT 和 GATE 在连接建立瞬间从地电位开始变化。由于 VIN 和 GATE 连接的寄生电感,VIN 电压和 GATE 引脚在低于 -20V 的电压上明显地振荡。外部 MOSFET 必须具有能承受这种过冲而不被损坏的击穿电压。图 3:VIN带电接入 -20V在负电压瞬态时,GATE 引脚跟随 VIN 的密切程度决定了 LTC4365 反向连接保护电路的速度。在图中所用比例情况下,两种波形几乎无法区分。注意,无需额外的外部电路来提供反向连接保护。AC 隔离LTC4365 有一个恢复延迟定时器,可滤除 VIN 噪声,并有助于防止 VOUT 颤动。在 OV 或 UV 故障发生之后 (或当 VIN 变为负电压时),输入电源电压必须至少在 36ms 之内返回所希望的工作电压窗口,以重新接通外部 MOSFET。若在不到 36ms 时间内脱离并重新返回故障状态,那么 MOSFET 保持断开状态。图 4 显示,LTC4365 隔离 40V 至 -40V 的 AC 线电压。在负电压部分,GATE 引脚跟随 VIN,但当 VIN 变为正电压时,GATE 引脚仍然保持在地电位。注意,VOUT 一直不受影响。图 4:36ms 恢复定时器隔离 28V、60Hz AC 线电压在故障情况下的高压瞬态图 5 显示一个测试电路,该电路在过压情况下产生瞬态。标称输入电源为 24V,过压门限为 30V。图 6 显示 VIN 在过压情况下的波形。这些瞬态视 VIN 和 GATE 引脚上寄生电感的不同而不同。即使在实验中,可选电源箝位 (D1) 未使用,电路仍然能承受这些瞬态而不被损坏。图 5:在VIN电感很大时发生 OV 故障图 6:未使用 TransZorb (TVS) 时,发生 OV 故障时的瞬态在两个电源之间做出选择该器件停机时,VIN 和 VOUT 引脚可以由两个不同的电源以不同的电压驱动。LTC4365 自动驱动 GATE 引脚至低于两个电源之中较低的电压,从而防止电流从任一方向流过外部 MOSFET。图 7 所示应用使用两个 LTC4365,以在两个电源之间做出选择。应该小心地确保在任意给定时间内两个 LTC4365 中只有一个被启动。图 7:在两个电源之中选择一个在VOUT已加电时,VIN带电反向接入甚至在 VOUT 由单独的电源驱动时,LTC4365 也可防止受到负 VIN 连接的影响。图 8 显示,当 LTC4365 处于停机模式,VOUT 加电至 20V,VIN 带电接入 -20V 电压时的波形。只要不超过外部 MOSFET 的击穿电压 (60V),那么 VOUT 端的 20V 电源电压就不受 VIN 端反向极性连接的影响。图 8:VOUT加电时VIN热插拔 (Hot SwapTM) 至负电源的波形结论LTC4365 控制器保护敏感电路免受过压、欠压和电源反向连接的影响。只要合乎用户可调的 UV 和 OV 跳变门限,那么电源电压就被传递给输出。在这个窗口之外的任何电压都被隔离,窗口电压最高为 60V,最低为 -40V。LTC4365 采用纤巧的 8 引脚 3mm x 2mm DFN 和 TSOT-23 封装,由于 LTC4365 采用了新颖的架构,所以可提供坚固和小尺寸的解决方案,而且所需的外部组件最少。LTC4365 无需给电源串联反向电压隔离二极管,用背靠背的外部 MOSFET 就可自动执行这一功能。LTC4365 提供 2.5V 至 34V 的宽工作电压范围,在停机时仅消耗 10µA 电流。

DIY机械键盘相关社区:机械键盘DIY

模拟电路相关文章:模拟电路基础

电流传感器相关文章:电流传感器原理热保护器相关文章:热保护器原理

28 聚合函数 MIN、MAX

Java 条件语句

调试方案

相关阅读